

ERRATUM

High-efficiency bismuth borate-based optical parametric chirped pulse amplifier with approximately 2.1 mJ, 38 fs output pulses at approximately 2150 nm – ERRATUM

Augustinas Petrulėnas, Paulius Mackonis, and Aleksej M. Rodin

DOI: https://doi.org/10.1017/hpl.2023.24. Published online by Cambridge University Press: 15 March 2023

The publisher apologises that upon publication of this article author name *Augustinas Petrulėnas* was incorrectly spelled as *Augustinas Petrulenas*.

Within the text a number of corrections were not included.

On page 2, 'barium borate (BBO)' should have been listed as 'bismuth borate (BiBO)'.

In Table 1 the number 250 was incorrectly listed as 150. The corrected table is as below.

YAG length [mm]	f [mm]	d [μm]	NA	$E_{\text{th}} [\mu J]$	$E_{\rm p} [\mu \rm J]$	L [mm]
15	200	100	0.0075	8	11	2
130	250	130	0.006	4	6.5	40

The online version of this article has been updated to correct the author's name.

Reference

Petrulėnas, A., Mackonis, P., and Rodin, A. M. (2023). High-efficiency bismuth borate-based optical parametric chirped pulse amplifier with approximately 2.1 mJ, 38 fs output pulses at approximately 2150 nm. High Power Laser Science and Engineering, 11, e27. doi: 10.1017/hpl.2023.24